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Cracks as sink of irradiation created point defects
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Abstract

The migration of irradiation produced point defects to a crack under mode I load in hcp Mg is studied in this work.
Random diffusion processes and the effect of the long-range elastic field of the crack are considered. A discrete model of
the material and a numerical method are used. The crack is considered as an isolated defect and the ‘fictitious’ sink
strength of the crack tip (k%) and crack surfaces (k%) for vacancies (v) and interstitials (i) are defined. The dependence of
these “fictitious’ sink strengths on the anisotropy diffusivity ratio, (Dc/Da), is studied. © 2001 Elsevier Science B.V. All

rights reserved.

PACS: 61.80.—x; 61.72.Ji; 66.30.Lw

1. Introduction

In a metal under irradiation an equal number of
vacancies and self-interstitial atoms, Frenkel pairs, are
created out of thermal equilibrium. These point defects
migrate by thermal activation in the lattice and they may
be trapped by other defects (sinks) like dislocations [1],
grain boundaries [2], interfaces [3,4] and voids [5]. Also,
the otherwise random walk of point defects is biased by
the long-range elastic field induced by the larger defects.
The detailed solution to the problem of irradiation
produced defects diffusing in a crystal lattice under the
combined effects of extended defects, and eventually an
externally imposed stress field (¢°), is extremely com-
plex. In order to obtain an approximate solution, the
microstructural evolution and the corresponding mac-
roscopic observable phenomena were studied earlier
within the framework of the rate theory [3,6]. For this
approach to be valid, a distribution of each sink type
present in the actual material is required to exist, in
order to calculate their average properties [7]. Each sink
type is identified by the corresponding sink strength. For
hcp crystals or uniaxially strained cubic crystals in a

"Tel.: +54-11 4754 7279; fax: +54-11 4754 7404,
E-mail address: sarce@cnea.gov.ar (A. Sarce).

given direction (named c), the anisotropy factor
(Dc/Da) determines the values of the sink strengths for a
given metallurgical state of the material [8-11], Dc(Da)
being the diffusivity of vacancies or interstitials parallel
(perpendicular) to c-crystal axis. This diffusion anisot-
ropy depends on the intrinsic anisotropy of the lattice
and on the elastic strain generated by external and in-
ternal stresses. The sink strength behavior allows to
analyze the bias for vacancies or interstitials of each sink
present in different irradiated materials.

An externally loaded crack in a material under irra-
diation is also a sink of point defects. However, contrary
to other sinks, the evolution of a crack in the material
under irradiation cannot be analyzed using the above-
mentioned rate theory. In fact, the crack is an isolated
defect and the incoming point defect fluxes must be
calculated in order to ascertain its evolution. The fluxes
of vacancies and interstitials to the crack were calculated
by Rauh and Bullough [12] assuming that the migration
in the vicinity of the crack tip is dominated by the long-
range elastic field of stress (pure drift approximation).

In the present work, the vacancy and interstitial
fluxes to the crack tip and crack surfaces of a mode I
loaded crack are calculated by considering both the ef-
fect of the long-range elastic field of the crack and the
random diffusion processes of point defects. A discrete
model of the material and a numerical method described
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in Section 2.1 are used. Also, from the total defect flow
at the crack tip and at the crack surfaces the factors
named ‘fictitious’ sink strengths of the crack tip (k%) and
crack surfaces (k%) are calculated in a similar way as the
strengths of other sinks (Section 2.2). The crack be-
havior in a hcp Mg crystal is especially considered
(Section 4.1).

2. Diffusion of point defects to a crack

In order to calculate the fluxes of irradiation pro-
duced point defects to a crack under mode I load, the
defect concentration profiles around the crack must be
calculated. The crack is considered to be wedge shaped,
of length R., occupying the negative x-region of the xz-
plane with its tip coinciding with the z-axis of a Carte-
sian coordinate system x, y, z (Fig. 1). The choice of this
crack shape facilitates the use of the polar coordinates
(r,0). The location of a point defect is then defined by
(r, 0), where x = rcos 0 and y = rsin 0. At steady state,
and when a single point defect type is only present in the
crystal, the concentration profiles must fulfil Fick’s law
of defect conservation at every representative volume
element (RVE) (for a definition see [13])

V-J+I. =K, )

where J is the defect current at a point r and its de-
pendence on the concentration ¢(r) is a function of the
crystal and defect symmetry, which will be discussed
below for hcp structures (Section 2.1). I, accounts for

the effect of the alternative sinks and K is the homoge-
neous defect production rate.

In the present work the defect production K is re-
placed considering a source far away from the crack,
which maintains a constant concentration ¢, at a radius
R. from the crack tip line. The solutions obtained within
this non-fully consistent approximation [7] showed the
right trend for dislocations [14] and voids [11]. Then, this
approximation is used here in order to obtain the ap-
proximate solutions for an isolated crack. The defect
conservation equation that describes this model is

V-J+1Ie=0 (2)
and the boundary conditions (see Fig. 1) are

C(Rh i(.)) = 07 (3)
c(Re, £0) = cevis 4)
c(r,t(n—@))=0 (5)

assuming the crack tip as an ideal sink of radius R;
(Eq. (3)) and the crack surfaces as ideal sinks as well
(Eq. (5)). Also, the crack is assumed to be inserted in a
purely elastic material, and the plastic zone in front of
the crack is not considered. R; is taken equal to 10 in
units of the lattice parameter and 2@, the angle of the
crack, is assumed to be equal to 5°. Finally, R, is taken
as equal to (or greater than) 50R;; from this distance
onwards, the influence of the long-range elastic field of
the crack could be neglected. Elastic isotropy is assumed
in order to evaluate the crack and the external strain
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Fig. 1. Wedge shaped crack of length R, and boundary conditions for the defect concentration around the crack, used in the numerical

solution of Eq. (2) by the finite differences method.
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field. This assumption was taken following the results
previously obtained by Tomé and Savino [15]. In fact,
they have shown that the effect of elastic anisotropy in
the dislocation and external field on the evaluation of
their interaction energy with a point defect is negligible
in hcp crystals if the full anisotropy of the defect dipole
tensor is consistently considered. Furthermore, the ra-
dial and angular dependence of the long-range elastic
field of a slit crack [16] was used for the wedge crack as
well. This is a good approach when the elastic field
is characterized by the stress-intensity factor K1 [17].
v, [ as in Eq. (4) refers to vacancies and interstitials,
respectively.

2.1. Discrete model and numerical method

In the initial work [18] and the following [19-21] the
dependence of the defect current J on the crystal and
defect symmetry was thoroughly discussed. Within the
‘discrete model’ the current density of defect J at a given
equilibrium site i located at 7; in the lattice is evaluated
as a sum over all the possible thermally activated mi-
gration jump vectors s; = r; — r; to neighbor equilibri-
um sites j located at r;. For the particular case of
hexagonal symmetry, Eq. (33) in [18] reduces to

J(ri) = Z %exp(*Q""/kT)[C(Vi) exp(E(r;) /kT)

— c(ry) exp(E(rj)/KT)]Sy;, (6)

where ¢(r;) and ¢(r;) (E(r;) and E(r;)) are the point de-
fect densities (formation energy) at neighbor sites i and j,
respectively, NV being the number of sites j that the defect
can occupy through a single jump from i in a direction s;;
passing a saddle point site with an energy QY. v is the
frequency associated with the defect vibration in the
jump direction.

If the lattice is strained by a field ¢, the first-order
dependence of the energies E(r;) and 0Y(r,) on the in-
duced strain &(r) is [18]

E(ri) = Eo = p° - e(ry), (7)

0"(ry) = Ey — p* - &(ry), ®

E, and E), being the energies of the stress-free lattice
with the defect at the equilibrium and at the saddle point
configurations, respectively. p® and p* are the respective
defect dipole tensors as defined by Tomé et al. [20] at the
equilibrium and at the saddle-point location. The long-
range elastic stress field, a function of r and 6 for each
K1, is explicitly included in calculating the interaction of
the crack with the point defects, given by Egs. (7) and
(8). The strain dependence of the energies in these
equations implies, in turn, a strain dependence of the
defect current in (6).

The numerical method used in the present work al-
lows to solve the set of Egs. (2)—(5) by means of a finite
differences technique [20]. For the particular case of
point defects diffusion in the presence of a crack field, a
mesh of nodal points is taken as shown in Fig. 1. A
planar grid, composed of a circular sector of angle
+(n — @ — ;) centered at the crack tip, is divided by an
integer number of angular nodes separated by an angle
A0 and the recursive formula R; = (1 + AO)R;_; applied
for the radial nodes. The radial node R, is fitted to
(Re — 02), 02 = 3 being in units of the lattice parameter,
and the last node Ry, is taken Ry, + 26,. Similarly, the
angular node 0Oy is fitted to (m — ¢ — 9,), with J; equal to
2°, and the last angular node is Oy, = Oy + 26,. The
values of 4, and , are chosen to make the last elements
Ryras1 and Oy y,y smaller than the other elements of the
mesh. From the described geometry, the problem has
reflection symmetry around the x-axis and the size of the
mesh is reduced because calculations are made over 1/2
of the associated area. Then, the boundary conditions
(5) are replaced by

Jo(r,0) =0 9)
and
c(r,(n— @) =0, (10)

where Jj is the defect current in the 0 direction. Finally,
for calculations, the concentration at 0 = — ¢, r = R,
is assumed to be equal to 0. Then, the considered
boundary condition (4) will be valid when 0<0<
n — ¢ — d;. Considering the small size chosen for the last
elements Ry 41 and Oy .y, the error introduced with
this assumption is minimized. Therefore, the defect
current density as given by (6) is inserted into (2), (3),
(4), (9) and (10).

The alternative sinks present in the material are
considered to be smeared out at an effective medium
within the area 4 = (1 — @)(R? — R?). Their absorption
rate (per unit volume) /. is assumed to depend linearly
on the average defect diffusivity (D) and concentration

c(r),

Le(r) = ki (D)e(r). (11)
k2, is the sink strength that measures the trapping
capability of the alternative sinks and will be assumed

to be a known parameter. The average defect diffusivity
is chosen as the invariant of the diffusivity tensor [22],

(D) = [DiDyD5]'", (12)

where D;, j=1,2,3 are the eingenvalues of the diffu-
sivity tensor in the crystal coordinate axes.
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2.2. ‘Fictitious’ sink strengths

Even if a crack must be considered as an isolated
defect, the ‘fictitious’ sink strengths for vacancies or
interstitials are defined in a similar way as the strengths
of other sinks [8,9,11,14]. In fact, the ‘fictitious’ sink
strength of a crack tip (k%) and the ‘fictitious’ sink
strength of crack surfaces (k%) are defined from the total
defect flows at the crack tip /T and at the crack surfaces
I5 (assuming the isolated crack insert in an unit volume)
as

It = kir(D){c) (13)
and
Is = k(D){c), (14)

where (c), when the constant concentration boundary
condition is used, is given by ce,; [11]. The adjective
“fictitious’ introduced here takes into account the fact
that these sink strengths do not have any special physical
meaning. They do not measure ‘per se’ any trapping
capability of the crack.

On the other hand, if an unit length in the z-direction
is considered, the total defect flows /It and I are calcu-
lated as

n—@
It = 2/A/ J,(R;, 0)R; d0 (15)
0
and
R,
Is = Z/A/ J@)(V, (p) dr. (16)
R,

i

J.(R;, 0) is the defect current density component normal
to the surface of radius R; around the crack tip and
Jo(r, @) is the corresponding defect current density
component normal to the crack surfaces.

3. Evolution of the anisotropy factors

In hexagonal strained materials, the diffusion an-
isotropy (Dc/Da) of vacancies and interstitials depends
on the intrinsic anisotropy of the lattice and on the
elastic strain generated by external and internal stresses.
The effect of the induced strain field (¢) on the defect
diffusivity can be obtained for small elastic deformations
explicitly as [19,23]

Df,- = dijutn, (17)
where d is the elastodiffusion tensor for vacancies or

interstitials. Therefore, the total diffusivity tensor D re-
sults

Dy; = Dj; + dijuen, (18)

where D° is the point defect diffusion tensor in the strain-
free crystal. In particular, when the applied external
stress is not parallel to ¢ and/or when the inhomogeneous
strain field of the crack is considered, the tetragonal
symmetry of the hcp lattice is lost and both diagonal
basal components (Da; and Da,) of D are different. Then,
the anisotropy factor (Dc/Da) cannot be directly defined.
However, when Da; and Da, are closed enough, the an-
isotropy factor of the diffusion can be approximated by
Dc/Dd’, where Da’ = (Da; + Day)/2 [24]. Each Day, Da,
and Dc component of the diffusivity tensor is evaluated
using in Eq. (18) the explicit expressions developed for
the vacancy and interstitial elastodiffusivity tensors in a
strained hcp lattice, as a function of the defect equilib-
rium and saddle-point dipole tensors [23].

4. Results
4.1. Vacancy and interstitial flows

The vacancy flow (J,) and the interstitial flow (J;) to
the tip and surfaces of the crack are calculated (as in-
dicated in Section 2.1) for different intensities of the
stress field of the crack. The values used for K1 (taken as
a parameter) give elastic deformations for r > R;. The
results are derivated using defect configurations corre-
sponding to a hexagonal crystal with a ¢/a ratio of Mg,
where atoms interact via an empirical short-range pair
potential fitted to various physical characteristics of the
Mg lattice [25]. Also, in Eq. (6) v is assumed to be the
same for vacancies and interstitials. The c-crystal axis is
taken to be parallel to different geometrical crack-axes.
Fig. 2(a) and (b) show the (J,(K1)/J,(K1=0)) ratio
and (J;i(K1)/J;(K1 = 0)) ratio to the crack tip (7) and
crack surfaces (S) as a function of K1, considering
¢//y, ¢//x and ¢/ /z, for R./R; = 50 at 560 K. It can be
seen that (J,(K1)/J,(K1 = 0)) to the crack tip decreases
when the strain field of the crack increases, while the
opposite is true for (J;(K1)/J;(K1 =0)). These results
are consistent with the calculations of Rauh and Bul-
lough [12] within the ‘pure drift’ approximation. In fact,
they found that when AV > 0 (interstitials) the point
defects which are not lost in the surrounding micro-
structure are flowing again only into the precise tip of
the crack, whereas when AV < 0 (vacancies), they flow
due to the strain field effect only into the crack surfaces
behind the crack tip (AV is the relaxation volume of the
elastic material arising from an isolated point defect).
The corresponding (J,(K1)/J,(K1 =0)) and (J;(K1)/
Ji(K1 =0)) values to the crack surfaces are approxi-
mately constant. This is a result of the particular strain
field of the crack (zero on the crack surfaces).

Finally, if alternative sinks are present in the mate-
rial, the (J, (ks)/Jy (kse = 0)) ratio behaves as it is shown
in Fig. 3. While for a relatively large density of single
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Fig. 2. (a) Flux of vacancies J, (in units of J,(K1 = 0)) and (b)
flux of interstitials J; (in units of J;(K1 = 0)) to a crack in a Mg
crystal modelled with an empirical potential vs. the intensity
factor K1. Three different crystal orientations are considered.
T and S on the curves indicate the crack tip and the crack
surfaces, respectively. Temperature = 560 K. R./R; =50.

crystal sinks the calculations predict a decreasing linear
dependence of the ratio with the single crystal sink
strength, for strengths smaller than 10" m~2 the
(Jy(kse) /Jy (ke = 0)) ratio converges to a constant value.
This behavior agrees with the screening effect of the
surrounding microstructure mentioned by Bullough [26].

4.2. ‘Fictitious’ sink strengths of an isolated crack

The already defined “fictitious’ sink strengths are ob-
tained from the flow of point defects to the crack tip and
crack surfaces using Egs. (2)-(4) and (6)-(16) and con-
sidering the crack inside of ideal materials characterized
by different intrinsic anisotropy factors. Fig. 4(a) and (b)
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Fig. 3. Ratio between the flux of vacancies to the crack tip in
Mg with alternative sinks and the corresponding flux of
vacancies in the same material without alternative sinks, as
a function of the single crystal sink strength k. Tempera-
ture =560 K. (R./R;) = 50.

show the values of k% and k% for different anisotropy
factors, considering ¢//y, ¢//x or ¢//z and R./R; = 50.
If the c-crystal axis is parallel to the crack y-axis or the c-
crystal axis is parallel to the crack x-axis, the “fictitious’
sink strength of the crack tip exhibits a minimum value
(close to the isotropy in the first case). On the contrary, if
the c-crystal axis is parallel to the crack tip (z-axis), k2
decreases as (Dc/Da) increases. The ‘fictitious’ sink
strength of the crack surfaces, k%, increases or decreases
with (Dc/Da) depending on the crystal orientation.

The dependence of k% upon the ratio (Dc/Da) is also
analyzed by assuming (R./R;) =100 and 150. In
Fig. 4(a) it is shown that the dependence of the “fictitious’
crack sink strength upon (Dc/Da) becomes stronger as
the (R/R;) ratio decreases. The same behavior was ob-
tained for the cavity sink strength [11]. These numerical
results permit to conclude that, for an assumed c-crystal
lattice orientation and a particular (R./R;) ratio, the
calculated ‘fictitious’ sink strength of the crack in a hcp
material (in a given metallurgical state) depends only
upon the analyzed dimensionless parameter (Dc/Da).

For Mg, as described by the empirical potential, the
(Dc/Da)° corresponding to the intrinsic anisotropy factor
for vacancies (values of label v in Fig. 4(a) and (b)) and
interstitials (label i in the same figures) are 0.79 and 0.95,
respectively. The effect of stresses upon the ‘fictitious’ sink
strengths enters via the changes in diffusivity induced by
them. For the mentioned Mg, these changes in diffusivity
are larger for interstitials than for vacancies [27].

5. Discussion and conclusions

The present analysis of point defect migration to a
wedge-shaped crack under mode I load in a material
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Fig. 4. (a) ‘Fictitious’ sink strengths of a crack tip and (b) crack
surfaces, as a function of the defect diffusivity ratio Dc/Da, for
three different crystal orientations. The diffusivities ratio pre-
dicted by an empirical potential for vacancies (label v) and in-
terstitials (label i) in a strain-free hcp Mg are shown. (R./R;) =
50, 100 and 150.

under irradiation, completes the studies of ‘pure drift’
approximation previously performed by Bullough and
co-workers [7,12,26]. In fact, both the random diffusion
process of defects and the effect of the long-range field
stress of the crack are included in the present work. The
calculations are based on a point defect diffusion model
which takes into account the discrete character of the
defect jump [18]. A numerical method [20] is used in

Table 1
Effect of the intrinsic anisotropy on the defect trapping

order to obtain the fluxes of point defects to a crack,
assuming that the latter is inserted in a purely elastic Mg
with hexagonal symmetry where atoms interact via an
empirical potential [25].

From the results obtained (Fig. 2(a) and (b)), it can
be seen that the flux of point defects to the tip of the
crack is strongly affected by the long-range elastic field
of the crack. In fact, the flux of vacancies is reduced to
one-half and the flux of interstitials is increased by = 2.4
times, when the intensity factor K1 increases from 0
(pure random diffusion processes) to 4.2 MPa mm!/2.

Also, it could be seen in Fig. 2(a) and (b) that the
presence of the long-range elastic field of the crack splits
the flux of point defects to the tip of the crack into three
curves. This splitting is a consequence of the dependence
of this flux on the stress-induced change in diffusivity
given by Eq. (17), which, in turn, is depending on the
orientation relationship between the crystal lattice and
the crack. The magnitude of the splitting depends on the
defect under consideration (it is larger for interstitials
than for vacancies) and on the intensity of the field. In
the absence of external stresses (K1 = 0) is the intrinsic
anisotropy of the diffusivity tensor D° which turns the
crack more or less effective for defect trapping, de-
pending on the above-mentioned crack orientation (see
Table 1).

In the model considered here, the crack is assumed to
be in a purely isotropic elastic medium. However, as the
long-range stress field of the crack in real cases diverges
at r =0, a plastic yield will occur at the tip. The slip
dislocations formed will themselves act as alternative
sinks for interstitials and vacancies and they will screen
the crack tip from the point defects. Then, as it is shown
in Fig. 3 by the J; (ks ) /Jy (ks = 0) ratio, the total defect
flow will be decreased from the values obtained in
Fig. 2(a) and (b).

The factors ‘fictitious’ sink strengths of the crack tip
(k%) and the crack surfaces (k%) are also calculated in
this work. They are depending on the dimensionless
parameter (Dc/Da) (Fig. 4(a) and (b)). Then, knowing
the anisotropy factors of vacancies and interstitials in a
given material the corresponding ‘fictitious’ sink
strengths of a crack insert in this material can be de-
termined. From their definitions (Eqgs. (13) and (14)),
these ‘fictitious’ sink strengths allow to calculate the
approximate total flows of vacancies and interstitials to
the tip and surfaces of cracks insert in materials where
(D),; and (c), , are known. Then, could be the behavior

J(K1=0)/J,(K1 =0,¢//2)

J(K1 =0)/K(K1 =0,¢//z)

c//z 1
c//y 0.93
c//x 0.86

1
0.84
0.82
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of a crack in a material under irradiation analyzed
without solving the diffusion equations for vacancies
and interstitials.

From the analysis performed in this work it is clear
that all predictions about the trapping of vacancies and
interstitials by a crack in a material under irradiation
depend on the knowledge of the behavior of both the
anisotropy factor of vacancies and interstitials. Thus, all
predictions have a strong dependence on the interatomic
potential used to decribe the material [28]. Also, the
assumed geometry of the crack will have an influence on
the results.

6. Summary

e Vacancies and interstitial fluxes to a wedge shaped
crack under mode I load in a hexagonal Mg crystal
under irradiation are obtained taking into account
the effect of the inhomogenous long-range stress field
of the crack and the random diffusion process of
point defects. It is assumed that the atoms of Mg
interact via an empirical short-range pair potential.

e The long-range stress field of the crack decreases the
flow of vacancies and increases the flow of intersti-
tials to the crack tip in Mg. These predictions are de-
pending on the potential assumed to represent the
atomic interactions.

e The ‘fictitious’ sink strengths of the crack tip (k%)
and the crack surfaces (k%) are defined. kfyg),
(kfrsy) 1is the factor that when multiplied by
(D), ((D);) and (c),({c);) allows to approximate the
total flow of vacancies /(rs), (total flow of intersti-
tials, /irs)i) to the crack tip and the crack surfaces.
(D), ((D),) and (c), ({(c);) are the vacancy (intersti-
tial) averaged diffusivity and averaged concentration,
respectively. The “fictitious’ sink strengths depend on
the anisotropy factor (Dc/Da).

e The vacancy and the interstitial flux to the crack tip
are decreased by the presence of dislocations around
the crack.
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